
AUTOMATIC GENERATION AND CORRECTION OF TECHNICAL EXERCISES

Ferran Prados1, Imma Boada2, Josep Soler3, Jordi Poch4

1 University of Girona, Computer Science Department, Campus de Montilivi, 17071 Girona, Spain, ferran.prados@udg.es
2 University of Girona, Computer Science Department, Campus de Montilivi, 17071 Girona, Spain, imma.boada@udg.es
3 University of Girona, Computer Science Department, Campus de Montilivi, 17071 Girona, Spain, josep.soler@udg.es
4 University of Girona, Computer Science Department, Campus de Montilivi, 17071, Girona, Spain, jordi.poch@udg.es

Abstract – The kernel of an e-learning environment developed
to improve both teaching and learning at the
technical/engineering degrees at Girona Polytechnic
University is presented. Such a kernel consist of two modules.
The exercise generation module, used to automatically
generate different versions of a base exercise and the
correction module, used to automatically correct the
generated exercises by applying a solution code maintained in
the base problem. The key of both modules is on the definition
of the base exercise which varies according to the subject. Our
environment supports mathematics, physics and computer
science problems amongst others.

Index Terms - Engineering and technology education.
Automatic correction, exercise generation

INTRODUCTION

Over the last few years advances in technology and
communications have lead to transformations in the education
system. Not surprising e-learning has become a priority at the
present time in higher education [1][2]. Currently, most higher
education institutions have introduced web-based
environments into their curricula.

In this paper we present the kernel of an e-learning
environment developed to improve both teaching and learning
at the technical/engineering degrees at Girona Polytechnic
University. Concerned by the alarming failure rate of these
courses we decided to develop an e-learning platform with the
idea of reducing it. We identified two major reasons for the
problem. The first is due to the fact that in most subjects
concepts are built one upon the other and a lack of
understanding in the first topics makes difficult the
comprehension of the next. After the few first sessions an
important percentage of students lose the thread of the course.
The second reason is a direct consequence of the first. In
general, engineering courses involve students having to solve
problems by applying the theoretic concepts. If students have
not acquired the theoretic level they do not feel motivated to
do the problem solving component.

The evaluation of this situation pointed to continuous
assessment as the solution to reduce the failure rate. A student
should not be able to advance in the subject unless a specified
level has been reached and the ability to solve related
problems has been acquired. Since this ability is related with
student skills, our interest is focused not only on the
evaluation of knowledge but also on the skills to solve
problems. In general, e-learning platforms are devoted to

multiple choice, fill-in-the-blanks, etc. They are suitable for
the assessment of theoretic concepts, but, for our purposes, we
need an additional capability in order to support practical
problems.

With this idea in mind we developed a new e-learning

framework aimed at:
(i) Supporting continuous assessment. The main task

involved in carrying out continuous assessment is teacher
correction which in many cases is just a mechanical
process. The idea is to develop a module able to perform
this mechanical process.

(ii) Supporting different kind of problems and not only test
problems. Our framework has to have a multidisciplinary
domain that enables it to be adapted to different subjects.
Although subjects might look quite different they can in
fact share a lot of common features. The correction of
physics and mathematical problems, for example, often
involves the same steps.

(iii) Providing teachers with feedback of student weaknesses.
We are not just interested in the correction of student
work we also want to track their progress on the subject
and the acquired skills.

(iv) Providing students with a friendly scenario to solve
practical problems. Design an environment that makes
student feel comfortable and supported. Each student
must have personalized attention, this means continuous
feedback from the platform and also exercises
specifically designed for him. The environment should
be seen as a private teacher who offers help when the
student is doing practice.

Currently, our e-learning platform is used in several

subjects of the technical/engineering degrees of the Girona
Polytechnic University with very promising results. In [6] , [7]
and [8] we described how it is applied in mathematic,
programming and database courses, respectively. The purpose
of this paper is to describe the kernel of the platform and how
it has been designed in order to support different kind of
problems.

THE KERNEL OF OUR PLATFORM

To define the platform the challenge was to develop a
module able to automatically support different kind of
exercises. Two main considerations had to be taken into
account. First, to guarantee that each student has a set of

EDMUNDO
Text Box
© 2005 ICECE05, International Conference on Engineering and Computer Education

exercises specifically designed for him we need a method to
automatically generate a great diversity of exercises. Second,
to correct the exercises we need an strategy that avoids
entering an specific solution for each exercise. To satisfy both
requirements we introduce the concept of base exercises and
we design the exercise generation and correction modules
described below.

I. Base Exercise

A base exercise is a single representation of a set of
problems. It consists of three main components:

 The problem descriptor which includes the different
descriptors of a problem. Each descriptor always contains
one or more variable parameters which can be numbers,
functions or words.
 The problem parameters which maintain for each
parameter of the descriptor the list of possible values that
could take.
 The solution code which maintains the strategy or the
solving method that has to be applied to correct all the
problems of the represented set.

The definition of this base exercise depends on the subject

as it will be seen in next sections.

II. Exercise Generation Module

In an e-learning environment generating different exercises
to guarantee that each student has a different workbook can be
a daunting task for any teacher. Moreover, if we take into
account that there is a large number of students per class. The
purpose of the exercise generation module is to reduce this
demanding task by a process that automatically comes up with
different versions of a base exercise.

A problem can be seen as a description, i.e. the set of
sentences describing the situation, and a set of parameters, i.e.
the values that have to be taken into account to solve it. In
order to obtain different versions of the same problem, we
consider: the information of the problem descriptor, the
problem parameters components of the base exercise and the
different degrees of variability that can appear in these parts.
Given a base exercise with this set of variable parameters the
generation module applies a random process that generates as
many different versions of the base exercise as the
combination of the parameters allows. These exercises are
recorded in the repository of the system and assigned to the
students.

III. Exercise Correction Module

Since we have different problems generated from a base
exercise, we require a method which automatically corrects all
of them. To avoid entering individual solutions for each one of
the generated exercises, the exercise correction module adjusts
the solution code of the base exercise to the exercise to be
corrected by taking into account its variable parameters. The
adjustment varies with the kind of exercise.

Since the key of all our strategy is on how we define the
base exercise, we are going to consider the typology of
exercises that are currently supported by our e-learning
platform and how the base exercise is constructed in each
case. The main groups of problems are: problems solved by
computer algebra systems, computer science problems and test
problems.

PROBLEMS SOLVED BY COMPUTER ALGEBRA SYSTEMS

The first group of exercises we consider are problems which
must be solvable with a computer algebra system. In this
group a large variety of problems from different subjects such
as mathematics, physics, chemistry, etc. can be included.

An example to give an idea of what a base problem looks
like is given below. To improve the example comprehension a
simplified notation has been used. In this example the
descriptor item stores three different versions of the same
problem. Observe that in all of these P1 and P2 appear as the
variable parameters of the problem. The values that these
parameters can take are represented in the problem parameters
item.

Problem Descriptor:

- Find the volume of a solid whose sections along
planes perpendicular to the x-axis are P1 if the
base of each section lies between the curves P2
in the xy-plane

- The base of a solid is the region enclosed by
the curves P2 in the xy-plane and the vertical
sections parallel to the line x=0 are P1. Find
the volume of a solid

- A solid is considered whose base is the region
limited by the curves P2 in the xy-plane and
whose sections along vertical planes parallel to
the line x=0 are P1. Find the volume of the
solid.

Problem Parameters:

P1={equilateral triangles; half–circles; regular
hexagonal; rectangles; isosceles triangles}
P2={y=x^2 and 2y=x^2+1;y=3+3x-x^2 and y=3*x^2-
6*x-9;y=x^2-1 and y= 5+4x-x^2 }

Since these exercises must be solvable with a computer
algebra system, we force the exercises generated by our
system to be implementable in Mathematica code. Such a
restriction rules out exercises in which a mathematical proof is
asked for, but these are not the main objective of an
intermediate-level mathematics course in engineering studies.

Taking this restriction into account, in the solution code of
the base exercise we maintain the Mathematica code needed to
solve all the exercises generated from it. Following with the
previous example, below we describe the corresponding
solution code. Note that P1 and P2 parameters will be replaced
by the corresponding P1 and P2 values of the generated
exercise. In this example SO represents the student’s solution.

Solution Code:

Clear{so1,p1,p2,f,g}
Sol=SO;
Accuracy = 6;
p1=P1;
p2 ={P2};
f[x_]=p2[[1]];
g[x_]=p2[[2]];
s=Solve[{y==f[x],y==g[x]},{x,y}];
s=x/.s;
x1=Min[s];
x2=Max[s];
Integrate[p1*{f[x]-g[x]}^2,{x,x1,x2}];
v=N[%];
If[SetAccuracy[IntegerPart[sol]-
 IntegerPart[v],accuracy]!=0,
Print["NotCorrect"]; Quit[]];
If[SetAccuracy[FractionalPart[sol]-
 FractionalPart[v],accuracy]!=0,
Print["Not Correct],
Print["Correct"],
Print["There is probably a syntax error"]];

When the student has the solution of the problem that has

had assigned, he enters it into the system by using an specific
interface designed for it [6]. The correction module adjusts the
Mathematica code of the base exercise with the values of the
problem. Then, it executes on-line the Mathematica code and
answers back whether the solution is correct or not. In case of
error the student can send a new solution.

COMPUTER SCIENCE EXERCISES

Currently, the system also supports computer science
exercises of introductory programming and database courses.
In these exercises the degree of variability that can be entered
is minimal compared to that previously presented. In fact the
main point of interest of these exercises is in its automatic
correction. To present them we describe first programming
exercises and then database exercises

I. Programming Exercises

Programming exercises have been designed for introductory
programming courses. These courses consist of lectures,
where key concepts of programming are explained, and
laboratory sessions where students practice. To make
programming less difficult for students we use a pseudo-code
in the lectures and a programming language in the laboratory.
The programming language is the variable parameter of a
programming base exercise.

Next, we present a simple example of a programming base
problem just to see how it looks like.

Problem Descriptor:

Design a program using P1 to compute the area of
a rectangle. Consider integer data.

Problem Parameters:

P1={Pseudocode, Java, C++, Pascal}

To solve a programming exercise the student must write the
solution code using the language fixed by the exercise. Such a
solution is written in a text file and sent to the correction
module. This module calls the appropriate compiler and
afterwards shows the compiling errors, if there are any. In the
case that there are errors, they can be corrected and a new
solution can be sent. This process can be repeated until a
solution with no compiling errors is obtained.

To support pseudo-code solutions we have developed a
pseudo-code compiler which generates JVM (Java Virtual
Machine) code. This compiler provides all the facilities to
identify syntax errors easily. When no compiling errors appear
in the solution, the correction module validates the student
code by using the set of testing values of the base exercise.
These values simulate the results obtained with the correct
solution of the problem for a given input, i.e. a set of inputs
with the corresponding correct output. During this process the
system shows the correct solutions and the solutions obtained
with the student code. In the case that there are errors a new
solution can be sent. The test data used to correct the student
code is selected in a random process. Therefore if the student
sends different solutions the testing sets used in each
correction have not to be the same.

Following the example the test data entered for the
problem are the input, two integers representing the basis and
the height of the rectangle, and the area as the output.

Test Data:

input= { 0,0 } output = {0}
input= { 2,4 } output = {8}
input= { 4,5 } output = {20}
input= { 3,3 } output = {9}
input= { 5,9 } output = {45}

II. Database Exercises

In undergraduate database courses students are taken through
all stages of database development: analysis, conceptual,
logical and physical design. At the end of the course the
student, amongst others things, has to be able to design
relational database schemas. In the case of database problems
our interest is not on the automatic generation of different
versions of the problem but in the automatic correction. We
consider that the degree of variability is inherent to the
problem descriptor and hence the automatic generation of new
versions is not necessary.

To describe these exercises we consider an example of a
well-known database exercise from [5]. In this case The
problem descriptor presents a set of requirements for a real
life application from which the student has to design a
relational database schema, i.e. a set of tables with the
corresponding attributes including primary and foreign keys.
In the descriptor, we fix the names of all attributes, so that the
correction will be easier. Observe in the example that the
name of the attributes which have to be used to solve the
problem are written in bold..

Problem Descriptor:

Design the relational database schema for a
company taking into account that:

- The company is organized into departments. Each
department has a unique name (dname), a unique
number (dnumber), and a particular employee who
manages the department (mgrssn)
- A department controls a number of projects,
each of which has a unique name (pname), a unique
number(pnumber)and a single location (plocation).
- We store each employee’s name (fname)(lname),
social security number (ssn), address(address),
salary (salary), sex (sex) and birth date(bdate).
An employee is assigned to one department but may
work on several projects, which are not
necessarily controlled by the same department. We
keep track of the number of hours (hours) per
week that an employee works on each project.

The solution code is the set of tables with the

corresponding attributes, including primary and foreign keys,
that satisfies all the requirements of the problem. The solution
of a database exercise is not unique. For this reason in the base
exercise we maintain some of these solutions. In the example
it can be seen that each one of them consists of a set of tables
with the corresponding attributes, primary and foreign keys.

Solution 1:

EMPLOYEE
Primary key: ssn
Foreign key: dnumber
Others attributes: fname, lname, bdate, address,
salary, sex

DEPARTMENT
Primary key: dnumber
Foreign keys: mgrssn
Others attributes: dname

WORKS_ON
Primary key: ssn, pnumber
Foreign keys: ssn, pnumber
Others attributes: hours

PROJECT:
Primary key: pnumber
Foreign keys: dnumber
Others attributes: pname, plocation

To solve the database exercise the student enters by using
an interface specifically designed for it the set of tables with
the corresponding attributes with the primary and foreign
keys. He must use the attributes given in the problem
descriptor. The correction module compares the solutions
maintained in the base problem with the student solution. It
checks if the student has organized attributes in the same way
and if the same primary and foreign keys have been defined.
The result of the correction is given on-line

TEST EXERCISES

The last group of exercises we are going to present are test
exercises. We consider three different test modalities which
differ in the type of questions that they include. These are: (i)
True-false questions. There is a single question and the correct
answer is yes, no or unknown. (ii) Multiple choice questions
with only one correct answer. There is a single question with a
set of possible answers and only one of these answers is the
correct one. (iii) Multiple choice with more than one correct
solution. There is a single question with a set of possible
answers and more than one of these answers are correct.

 In general, an e-learning platform that supports test
exercises has a pool where all test questions have been entered
[3][4]. To generate a test exercise a random process selects
questions from this pool. The random process can be applied
to select the questions and, in the case of multiple choice with
more than one solution, it can also be applied to select the set
of possible answers that appear in the question descriptor.
Moreover, if questions are organized by topic the random
process should also randomize the number of questions per
topic. However, independent of the degree of sophistication of
the random process and the number of parameters that can be
randomized, in the end the variety of tests that can be
generated in these platforms depends solely on the number of
questions stored in the pool.

Our proposal introduces a variability factor in the question

descriptor. A test base exercise is composed of four items:

1. The question descriptor. Here we include the different

descriptors of the question with the corresponding variable
parameters. We can consider whole questions or questions
composed by different parts. In this last case, we
decompose the question into different parts: introduction,
body and final question. For each one of these parts we
introduce different descriptors. For example, an
introductory part should be Consider that … / Suppose that
… /Let us consider that… i.e. different sentences to say the
same thing. The generation module applies the random
process to each one of these parts and the final version is
obtained by connecting them.

2. The problem parameters which maintains the possible
values that could be taken by the parameter.

3. The solution code maintains the different answers, which
can also have variable parameters. Each item has assigned
the solution code (i.e. if it is true or not, and in case of
depending of a function how it has to be computed). If the
answer depends of a parameter the solution code is given
as a function of this parameter.

4. Number of visible answers. According to the type of test
we have selected (true-false or multiple choice) we can
select the number of answers of each question of the test.

Next, we give an example of a base test problem. In this

case there is only one descriptor of the question and the
question has one variable parameter P1. As it can be seen in
next item P1 represents two matrices A, B which can take

three possible values. In the answer descriptor we write a
possible answer and its corresponding solution code. The first
one for example is A·B is a 3x4 matrix, in this case the
answer will be correct if A and B are substituted by the second
set of values that can be taken by the parameter P1. Finally the
number of visible answers has been set to 4, this means that
each generated test in which this question appears will have
four possible answers.

Problem Descriptor:

Given the following matrices P1 which of the
following sentences are true

Problem Parameters:

P1={
A=((1 2 3)(4 7 6)) B=((2 0)(-1 4)(2 7)(1 5));
A=((7 6)(2 4)(1 -1)) B=((5 6 2 1)(0 -1 4 3));
A=((4 7 -1 0)(2 6 3 8)(0 1 0 1))
B=((2 1 0)(1 -3 -1)(0 -1 0))
}

Answer descriptor and Solution Code:

- A·B is a 3x4 matrix
Correct when P1 is the second
- A·A is an squared matrix
Incorrect
- Bt·B =B·Bt
Correct when P1 is the third
- At·A is a 3x3 squared matrix
Correct when P1 is the first
- A·B =B·A
Incorrect
- A·B is an squared matrix
Incorrect

Number of visible answers: 4

An important feature of our test generation module is that

it supports question with images. This is of special interest in
exercises that require the evaluation of a graph. We can enter
the variable parameters into the graph function in such a way
that each plot will be different.

The correction of test exercises is straightforward. The
correction module compares the solution entered by the
student with the correct solution maintained in the base
problem. As in the previous case there is an interface designed
to enter the solutions of test exercises. The test correction
module integrates a functionality, supervised by the teacher,
that allows students to view their response and the correct
response to each question on the test. This is a good way for
students to learn from their mistakes. Even though students
would give the correct test answer to another student, we can
be confident that the student’s test question and answers are
unique from other students.

OUR E-LEARNING PLATFORM

To end the paper we give a brief overview of our e-

learning platform to see how these modules are integrated in
it. Besides the generation and correction modules our e-

learning platform has: (i) A repository of problems which
maintains the base problems introduced in the system. (ii) An
assessment module which collects from the data base
quantitative data about student work such as number of errors,
types of errors, time taken to complete the problem, etc. (iii)
A help module which supports help exercises. The repository
of problems stores exercises and exercises with help levels
that guide the student to the solution. The help module
according to the mistakes made by student activates the
different levels of help. (iv) A Student-Teacher
Communication Channel which establishes a virtual
communication channel between the teacher of a group and all
the students that compose this group. This channel can be used
by the teacher as a virtual tutoring system.

A demonstration of our e-learning platform is available at
http://acme.udg.es/demoicece2005

CONCLUSIONS

We have presented the kernel of an e-learning platform
developed at the Girona Polytechnic University and used in
the technical/engineering degrees. Different of other platforms
it supports different types of problems by using a similar
strategy based on a base exercise and a automatic correction
and an exercise generation module. The capability of our
platform to support a great variety of exercises makes it
suitable not only for knowledge assessment but also for skills.
Currently, the platform is used in several courses with very
promising results.

REFERENCES

[1] Barajas M., “Restructuring Higher Education institutions in Europe. The

case of virtual learning environments”, Interactive Educational
Multimedia, No.5, October 2002, 1-28.

[2] Colace F., De Santo M, Vento M., “Evaluating On-Line Learning
Platforms: A case Study” 36th Annual Hawaii International Conference
on System Sciences (HICSS'03) - Track 5 January 06 - 09, 2003

[3] Hwang G.J., "A Test-Sheet-Generating Algorithm for Multiple
Assessment Requirements", IEEE Transactions on Education, Vol. 46,
No.3, August 2003, 329-337.

[4] Tartaglia A., Tresso E.., "An Automatic Evaluation System for
Technical Education at the University Level", IEEE Transactions on
Education, Vol. 45, No.3, August 2002, 268-275 .

[5] Elmasri R., Navathe B. “Fundamentals of DataBase Systems” 3rd
edition. Addison-Wesley, Reading, 2000.

[6] Soler J., Poch J., Barrabés E., Juher D., Ripoll J., " A tool for the
continuous assessment and improvement of the student’s skills in a
mathematics course", TICE 2002, 105-110.

[7] Boada I., Soler J., Prados F, Poch J., " A teaching/learning support tool
for introductory programming courses", IEEE Proceedings of ITHET
2004, 5th Annual International Conference, 604-609.

[8] Prados F., Boada I., Soler J., Poch J., " An automatic correction tool for
relational database schemas", IEEE Proceedings of ITHET 2005, 6th
Annual International Conference, S3C 9-14.

